If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+12x-81=0
a = 16; b = 12; c = -81;
Δ = b2-4ac
Δ = 122-4·16·(-81)
Δ = 5328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5328}=\sqrt{144*37}=\sqrt{144}*\sqrt{37}=12\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{37}}{2*16}=\frac{-12-12\sqrt{37}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{37}}{2*16}=\frac{-12+12\sqrt{37}}{32} $
| 4x+2x=x+x+20 | | 43=x25 | | T=7g | | x^2+22=13 | | 8x+34=226+4x | | 12x-11+52=9x-15 | | 8x+34=225+4x | | 8x+34=224+4x | | -7a-1=-141 | | 8x+34=223+4x | | 8-(-20)=x | | 8x+34=220+4x | | 26=11x+4 | | -12x+13x=-32 | | 8x+34=218+4x | | 8x+34=238+4x | | 8x+34=248+4x | | 4n-1(-2n-5)=-2 | | 8x+34=288+4x | | x+24=-70 | | 11.95x-6.95=174.25 | | 135+70+93=+x | | 3(2x+3)-x=49 | | 14(y−9)+20y=16y−3(30) | | |4-2x|=2x+1 | | 3-2p-14=p+14 | | 52=-a/11=48 | | -10n-1=169 | | 3(x+2)+x=34 | | 2|x-8|=20 | | 6.93+0.2p=–4.05−5.9p | | x^2-2x=5.0625 |